
Using Temporal Logic to Specify and Verify

Cryptographic Protocols

(Progress Report)

James W. Gray, III1

Department of Computer Science

Hong Kong University of Science and Technology

John McLean

Center for High Assurance Computing Systems

Naval Research Laboratory

Abstract

We use standard linear-time temporal logic to specify cryptographic protocols,
model the system penetrator, and specify correctness requirements. The re-
quirements are speci�ed as standard safety properties, for which standard proof
techniques apply. In particular, we are able to prove that the system penetrator
cannot obtain a session key by any logical or algebraic techniques. We compare
our work to Meadows' method. We argue that using standard temporal logic
provides greater exibility and generality, �rmer foundations, easier integration
with other formal methods, and greater con�dence in the veri�cation results.

1 Introduction

We have started work on a project to apply temporal logic to reason about
cryptographic protocols. Some of the goals of the project are as follows.

1. Allow the user to state and prove that the penetrator cannot use logical
or algebraic techniques (e.g., we are disregarding probabilistic attacks) to
obtain certain words (e.g., session keys). Although this is a vital correct-
ness condition for cryptographic protocols, as far as we know, Meadows'

1Supported by grant HKUST 608/94E from the Hong Kong Research Grants Council.

1

method ([Mea92]) is the only approach that has successfully proved such
statements. This is surprising in light of the large number of papers writ-
ten about formal analysis of cryptographic protocols.

2. As far as possible, we will employ the standard concepts and techniques
used in verifying the correctness of distributed systems. In the large num-
ber of papers on cryptographic protocol analysis, there is a general ten-
dency to introduce new logics with many special-purpose axioms. (One
exception is the work of Bieber, et. al. [BBCLvW93]; however, that work
does not address our �rst goal.) Based on our work so far, we see no
reason to introduce any new axioms. We plan to use only existing logics.

In this paper, we provide a rough idea of our approach, describe the progress
to date, and outline what we believe will be the primary advantages of our
approach. Since the approach of Meadows and Syverson (see [Mea92], [SM93],
and [SM94]) is most closely related to our work, at various places throughout
the paper we make comparisons between ours and theirs.

2 Model

An important step in any security analysis is to set out the threats and capabil-
ities of the penetrators that are being countered. That is, we need to establish
the precise objectives of the penetrator (i.e., the threats that are of concern)
and the capabilities that the penetrator can use to accomplish those objectives.
These objectives and capabilities must be expressible within the model that is
used in our security analysis.

2.1 Threats

Roughly speaking, we want to reason about protocols that establish a key for
use during a session involving two participants|the initiating participant, which
we'll denote by A, and the receiving participant, which we'll denote by B. Typ-
ically, there is another legitimate participant of the protocol|the key server,
which we'll denote by S. The types of threats that concern us (i.e., the objec-
tives of the penetrator) are the following. (Later, we will make these threats
precise in the form of requirements on the protocol.)

1. During the process of distributing keys to the legitimate participants, a key
is accidentally disclosed to the penetrator in addition to being accepted
as a good key by one of the legitimate participants (viz, either A or B);

2. A key is accepted (by one of the legitimate participants) for a given session
between partipants A and B and then later accepted for a di�erent session,
perhaps with di�erent participants.

2

3. One of the legitimate participants accepts a key that was not generated
by the key server expressly for the present session;

4. B accepts a key for a session that is ostensibly with A, but in fact, was
not initiated by A.

2.2 Penetrator Capabilities

Roughly speaking, we are concerned with a penetrator that has complete control
over the communication network. As such, we allow the penetrator to have the
following capabilities. The penetrator can:

1. intercept all outgoing messages;

2. modify any message (in any way consistent with the keys she posseses;
e.g., the penetrator cannot encrypt or decrypt a piece of data with a key
that she does not possess);

3. deliver any message (that she possesses) to any legitimate participant;

4. start up any number of legitimate participants (e.g., if it furthers her
objectives, the penetrator could start up multiple instances of a participant
acting as the initiator of the protocol.).

2.3 Justi�cation of the Penetrator's Capabilities

It may seem that we are giving the penetrator too much power. For example,
in the above, we have given the penetrator complete control over the network.
It is as if every aspect of the network (barring the relatively few \legitimate"
participants of the protocol, viz, A, B, and S) has been subverted by the pene-
trator. However, allowing the penetrator to have such control essentially gives
us a worst-case analysis of the security of the protocol. That is, when rea-
soning about security, we typically want to know what is the worst possible
situation that the system can get in. Therefore, we have given the penetrator
the greatest possible capability short of subverting the legitimate participants
of the protocol.

In addition to these considerations, one of the capabilities described in the pre-
vious section merits some further justi�cation. Namely, the capability to \start
up any number of legitimate participants" is provided so that we can reason
about arbitrary interleaving attacks, such as those described in [DvOW92].

3

2.4 De�nition of the Model

The above threats and capabilities motivate the model we adopt, which was
originally formulated by Dolev and Yao [DY83] and later substantially general-
ized by Meadows [Mea92]. In this section, we set out this model.

We start by describing our general model of distributed computation, which is
based on a standard model from the distributed computing literature, namely,
the so-called \interleaving" model in which all events|including concurrent
events|occurring during an execution of the system are interleaved to form a
single \trace" of that execution (see, e.g., [Lam91]). As is standard, we will
consider a trace to be an in�nite sequence of system states.2 The system is then
characterized by its set of possible traces.

The distributed system consists of a set of agents, P1; P2; : : : ; Pi; : : :, each with a
local state, along with a communicationmedium. A global system state (i.e., an
element of a system trace) is composed of the local state for each agent together
with the state of the communication medium.

Each agent's local state is represented by a set of local state variables. We will
indicate that a particular state variable, say x, is local to a particular agent, say
Pi, using a dot notation similar to the notation used for references to �elds of a
record in Pascal, viz, \Pi:x". For example, each agent may use a local program
counter named pc to keep track of its local execution of the protocol. Program
counters local to di�erent agents can be distinguished by the dot notation.

We represent the communication medium as a set of messages, �. We will write
send(Pi; Pj;m) to denote that agent Pi sends the message m (i.e., places it
on the communication medium) addressed to Pj . We make this precise using
Lamport's Raw Temporal Logic of Actions (RTLA) [Lam91].3

Recall that in RTLA, an action is a statement about pairs of states. Unprimed
state variables (e.g., �) refer to the value in the �rst state and primed state
variables (e.g., �0) refer to the value in the second state. We de�ne the send
action as follows.

send(Pi; Pj;m)() �0 = � [f (Pi; Pj;m) g

Similarly, we write receive(Pi; Pj; x) to denote that Pi blocks until there is a
message on the communication medium from Pj and then the contents of that
message are copied to Pi's local state variable, x. We make this precise using

2A \terminating" computation is modeled as an in�nite trace that has a �nite pre�x
representing the computation prior to \termination", the �nal state of which is repeated (or
\stuttered") in�nitely to form the remainder of the trace [Lam91].

3We use Raw TLA since in the present paper we are unconcerned with the issues of

re�nement.

4

RTLA as follows.

receive(Pi; Pj; x)() (9m)[(Pj ; Pi;m) 2 � ^

�0 = �� f (Pj; Pi;m) g ^

Pi:x
0 = m]

(1)

We also allow agents to receive messages without specifying the sender. We
denote such an action by receive(Pi; p; x), where p is a state variable local to Pi.
We de�ne this action as follows.

receive(Pi; p; x)() (9Pj ;m)[(Pj; Pi;m) 2 � ^

�0 = �� f (Pj; Pi;m) g ^

Pi:x
0 = m ^

Pi:p
0 = Pj]

(2)

Now, the capabilities of the penetrator can be expressed in terms of the model as
follows. We will have a designated agent, E, representing the penetrator. Part
of the penetrator's local state is a set of \words" that she possesses, denoted
E:words. This set of words includes the messages that she has received over the
communication medium as well as words the agent has computed by performing
operations (e.g., encryption) over the set of words she already possesses.

E nondeterministically performs some sequence of actions, chosen from the fol-
lowing possibilities.

� intercept a message and add it to E:words;

� produce a new word by performing some operation (e.g., encryption)
on some words that she already possesses and add the new word to
E:words. Note that if the penetrator already possesses some encrypted
word encrypt(m; k), she must also possess the encryption key, k, in order
to produce the clear-text message, m.

� send some word that is inE:words to any legitimate participant (ostensibly
from any other participant).

Before formalizing these actions, we recall a particular action that is often useful
in RTLA speci�cations; namely, Unchanged (�), where � is a set of state vari-
ables, speci�es that every variable in � does not change. More precisely, we'll
use the following de�nition.4

Unchanged (fv1; v2; : : : ; vng)() v1 = v0

1
^ v2 = v0

2
^ : : :^ vn = v0

n

For convenience in specifying the set of variables that do not change, let � be the
set of all state variables, including all agents' local state and the communication
medium. We de�ne the action of the penetrator intercepting a message by

4This de�nition of Unchanged (�) is actually a special case of Lamport's de�nition, but it
is su�cient for our purposes.

5

intercept() (9Pi; Pj;m)[(Pi; Pj;m) 2 � ^

�0 = �� f (Pi; Pj;m) g ^

E:words0 = E:words [fmg ^

Unchanged (� � f�;E:wordsg)]

The action of the penetrator producing a new word from other words she already
possesses is de�ned as follows.

M1() (9m;K)[m 2 E:words ^K 2 E:words ^
E:words0 = E:words [fencrypt(m;K)g]

^ Unchanged (� � fE:wordsg)

M2() (9m;K)[m 2 E:words ^K 2 E:words ^
E:words0 = E:words [fdecrypt(m;K)g]

^ Unchanged (� � fE:wordsg)

M3() (9m;K)[decrypt(encrypt(m;K);K) 2 E:words ^
E:words0 = E:words [fmg]

^ Unchanged (� � fE:wordsg)

M4() (9m;K)[encrypt(decrypt(m;K);K) 2 E:words ^
E:words0 = E:words [fmg]

^ Unchanged (� � fE:wordsg)

manipulate()M1_M2 _M3 _M4

The action of the penetrator sending a message to one legitimate participant
ostensibly from another legitimate participant is de�ned by

impersonate() (9Pi; Pj;m)[m 2 E:words ^

send(Pi; Pj;m) ^

Unchanged (� � f�g)]

We can now de�ne a penetrator action as consisting of one of the above actions.

E-action () intercept _manipulate_ impersonate (3)

The capability of starting up any number of legitimate participants will be
modeled by placing an in�nite number of initiators fA1; A2; : : :g, an in�nite
number of receivers fB1; B2; : : :g, and (if appropriate) an in�nite number of key
servers fS1; S2; : : :g in parallel with the penetrator, E. That is, the Ai, Bj , and
Sk will be among the set of agents, P1; P2; : : :. Then, the penetrator can make
use of as many of these legitimate participants as needed to launch an attack.

6

2.5 The Flexibility of the Model

A few comments on the exibility of our model of the penetrator are in order.

First, note that the M3 and M4 actions are our formalization of the algebraic
properties of the encryption algorithm used in the protocol. To analyze a pro-
tocol that uses an encryption algorithm with di�erent algebraic properties, we
can simply substitute actions describing those properties for M3 and M4. For
example, if a protocol uses the \exclusive or" (�) operator, we might want to
model the commutativity property of � by including the following action.

M30 () (9w1; w2)[�(w1; w2) 2 E:words ^
E:words0 = E:words [f�(w1; w2)g]

^ Unchanged (� � fE:wordsg)

In contrast, making such a change in Meadows' method would present serious
di�culties. This is because Meadows models the algebraic properties of the en-
cryption algorithm as a Noetherian and locally conuent term rewriting system.
In such systems, all terms have a unique canonical form|the so-called \reduced
form". However, due to commutativity,�(w1; w2) can be rewritten as �(w2; w1)
and then back again; there is no unique canonical form. Accomodating such an
encryption algorithm would require a major change to her tool. This is because
the algorithm at the heart of her tool|the narrowing algorithm|depends on
the Noetherian and locally conuent properties. At each step of her analysis,
all words are rewritten in reduced form.

Second, note that we could easily insert additional penetrator capabilities into
Formula 3. For example, if we wanted to reason about attacks such as the
Denning-Sacco attack on the Needham-Schroeder protocol [DS81], we could
include a \compromise key" capability, which could be used by the penetrator
to obtain previously used keys.

The possibilities of adding penetrator capabilities and changing the underlying
encryption algorithm illustrate the exibility and power of modelling the pene-
trator in temporal logic. Further, our approach makes the model of the pene-
trator explicit. As we will see in the next section, we use the same language to
specify the protocol being analyzed and the requirements being proven. Thus,
all de�nitions and assumptions used in the analysis are stated in a single lan-
guage, rather than, e.g., being partly buried in the de�nition of the automated
tool.

7

3 A First Example

As our �rst example, we chose something extremely simple. Our motivations
are to provide a rough idea of what's involved in applying our approach and to
provide some evidence that the approach is feasible.

The example we chose cannot even be called a protocol; it is the example used
by Meadows in [Mea92, pages 15{16] to illustrate the use of her method. In
Meadows' formalism, the example consists of a single rule, viz,

If Y �W and KEYSTATE (Z) = X then W :=W [encrypt(Y;X)

where W is the set of words known to the penetrator, which we've called
E:words.

The intuition behind this rule is that the legitimate protocol participant, Z,
possesses a key, denoted KEYSTATE(Z). Whenever Z receives a word, it
encrypts that word with KEYSTATE(Z) and returns the result. We can specify
this rule in our approach as follows.

Z1() Z:pc = 1 ^

receive(Z;Z:p; Z:x) ^

Z:pc0 = 2 ^

Unchanged (� � f�; Z:p; Z:x;Z:pcg)

Z2() Z:pc = 2 ^

send(Z;Z:p; encrypt(Z:x;KEYSTATE(Z))) ^

Z:pc0 = 1 ^

Unchanged (� � f�; Z:pcg)

Z-Init () Z:pc = 1 ^ Z:x = NULL

We specify the protocol running in parallel with the penetrator as

R() Z-Init ^ � = fg ^ E-Init ^2(Z1 _ Z2 _ E-Action) (4)

(where E-Init will be described below).

Our description is clearly not as compact as Meadows'. There are two reasons
for this.

1. We have included a program counter pc that allows Z to keep track of its
place in the protocol. In the present example, it simply alternates between
receiving and sending. In Meadows' formalism, the act of receiving a
message and sending a reply is treated as a single action and so she does
not need to maintain a program counter for this simple example. In more
complex examples, involvingmultiple rules that are performed in sequence,
Meadows' formalization would be similar to ours.

8

2. We state implicitly which variables do not change. In Meadows' method,
if a variable is not mentioned, it is assumed to remain unchanged. We
could adopt this approach too. However, as pointed out by Lamport
[Lam91, page 59] this introduces an \inherent complexity epitomized by
the observation that y0 = y0 is not equivalent to true." (The former allows
y to change, whereas the latter does not.)

For this �rst example, we want to prove that the penetrator cannot obtain a
particular word, a. This is easily formalized in temporal logic as

R! 2(a =2 E:words)

(where R is the speci�cation of the protocol). The standard approach to proving
such a formula is to prove that

a =2 E:words (5)

is an invariant over the system transition relation. However, as is typically the
case, this formula is not strong enough to be directly proved invariant. Meadows
describes why this is the case in terms of her tool [Mea92, page 16]. In terms
of temporal logic, the problem is as follows.

Suppose we have a state where the penetrator has obtained encrypt(a; k) and k
for some word k, but not yet obtained a. In this state, Equation 5 is true. But, in
a single transition, the penetrator can obtain a (by performing the decryption)
and Equation 5 will be true. Thus, Equation 5 is not a su�cient condition on
the pre-state to ensure that Equation 5 will hold in the post-state.

Meadows solves this problem by de�ning a formal language by way of the fol-
lowing context-free grammer.5

K! a

K! encrypt(K;L)
K! decrypt(K;L)

where L is the language consisting of all words not containing variables. Mead-
ows then proves that

The penetrator does not possess any word in K.

is invariant. The technique she uses to prove this is rather complicated and only
partly formalized. It involves transforming the grammer rules into prolog goals,
running her automated tool on them, and then interpreting the results again in
terms of the context-free grammer.

5We've made a few minor syntactic changes to Meadows' grammer to bring it in line with
our notation.

9

In contrast, we can formalize the entire proof in terms of temporal logic. First,
we specify the set of words K as follows.

(8w)w 2K() (w = a _

(9k; l)[w = encrypt(k; l) ^ k 2K] _

(9k; l)[w = decrypt(k; l) ^ k 2K]
)

(6)

Since we explicitly include the communication medium � and the participant's
local variable Z:x in our model, we cannot simply use

(8w)[w =2 E:words _w =2 K]

as our invariant. In particular, if a word in K is present on the communication
medium � or in the variable Z:x (when Z's program counter is 2), then it can
be obtained by the penetrator. Therefore, we use the following formula as our
invariant.

INV() ((Z:x =2K _ Z:pc 6= 2) ^

(8w)[w =2 E:words _w =2K] ^

(8P1; P2; w)[(P1; P2; w) =2 � _w =2K]
)

(7)

Now we can see what is needed as the penetrator's initial condition, namely,
we need an initial condition that is strong enough that we will be able to prove
INV is initially true. The following is su�cient.

E-Init () (8w)[w =2 E:words _w =2 K]

We can now state and prove our theorem.

Theorem 3.1

R) 2(a =2 E:words)

Proof: In overview, the proof goes like this. We use induction to prove

R) 2(INV) (8)

and we show that
INV) a =2 E:words (9)

and �nally, from Formulas 8 and 9 we can easily establish the theorem.

Proving Formulas 8 and 9 are straightforward, mainly requiring a lot of case
checking. To provide an idea of what's involved, we prove part of Formula 8.

10

From the de�nition of R (Formula 4), we see that it is su�cient to prove a base
case:

(Z-Init ^ � = fg ^ E-Init)) INV (10)

and an induction case:

((Z1 _ Z2 _ E-Action) ^ INV)) INV0 (11)

(where INV0 is the formula obtained from INV by replacing all program variables
with their primed counterparts).

We prove Formula 10 by assuming Z-Init , � = fg, E-Init , and :INV and show-
ing that these assumptions lead to a contradiction. Applying some de�nitions
(and distributing the : as far as possible), we have the following assumptions.

(a1) Z:pc = 1
(a2) Z:x = NULL
(a3) � = fg

(a4) (8w)[w =2 E:words _w =2K]
(a5) (Z:x 2K ^ Z:pc = 2) _

(9w)[w 2 E:words ^w 2K] _

(9P1; P2; w)[(P1; P2; w) 2 � ^w 2K]

We break (a5) into three cases corresponding to the three disjuncts.

Case 1: Z:x 2K ^ Z:pc = 2

From (a1), we immediately obtain the contradiction 2 = 1.

Case 2: (9w)[w 2 E:words ^w 2K]

Existentially instantiating w (to a constant w0), we have

w0 2 E:words ^w0 2K

and instantiating w in (a4) to w0, we obtain a contradiction.

Case 3: (9P1; P2; w)[(P1; P2; w) 2 � ^w 2K]

Existentially instantiating P1, P2, and w to constants and making use of

(a3), we have (P1; P2; w) 2 fg, which is a contradiction of basic set theory.

Thus, in all cases we have a contradiction and Formula 10 is proved.

To prove Formula 11 we again proceed by contradiction. We assume (Z1 _
Z2 _ E-Action) and INV and :INV0. Applying some de�nitions, we have the
following assumptions.

11

(b1) Z1 _

Z2 _

intercept _

impersonate _

M1 _

M2 _

M3 _

M4

(b2) Z:x =2K

(b3) (8w)[w =2 E:words _w =2K]

(b4) (8P1; P2; w)[(P1; P2; w) =2 � _w =2 K]

(b5) (Z:x0 2K ^ Z:pc0 = 2) _

(9w)[w 2 E:words0 ^w 2K] _

(9P1; P2; w)[(P1; P2; w) 2 �
0 ^w 2K]

We can now proceed by considering a large number of cases. In particular, there
are eight cases corresponding to the eight disjuncts of (b1) and each of those
has three subcases corresponding to the three disjuncts of (b5). Hence, there
are a total of 24 subcases. Since all of these subcases are straightforward, we
give only a few as a sample of the kind of reasoning that is involved.

Case 1: Z1

By the de�nition of Z1, we have the following.

(c1.1) Z:pc = 1
(c1.2) receive(Z;Z:p; Z:x)
(c1.3) Z:pc0 = 2
(c1.4) Unchanged (� � f�; Z:p; Z:x;Z:pcg)

Subcase 1.1: Z:x0 2K ^ Z:pc0 = 2

By (c1.2), the de�nition of receive (Formula 2), and existential in-

stantiation, we have (Pj; Z;m) 2 � (where Pj is a constant) and
Z:x0 = m. By the Subcase 1.1 assumption, we have

(Pj; Z;m) 2 � ^m 2K

and instantiating (b4) with P1 = Pj, P2 = Z, and w = m, we obtain
a contradiction.

Subcase 1.2: (9w)[w 2 E:words0 ^w 2K]

12

By existential instantiation, we have w0 2 E:words0 and w0 2 K

for some constant w0. By (c1.4) we know that E:words0 = E:words.
Therefore, we have that

w0 2 E:words ^w0 2K

which, by appropriately instantiating (b3), is a contradiction.

Subcase 1.3: (9P1; P2; w)[(P1; P2; w) 2 �
0 ^w 2 K]

By existential instantiation, we have (P1; P2; w0) 2 �0 and w0 2

K for constants P1, P2, and w0. Further, by (c1.2), the de�nition
of receive (Formula 2), and existential instantiation, we have �0 =
� � f (Pj; Z;m) g (where Pj and m are constants). Thus, we have
(P1; P2; w0) 2 �� f (Pj; Z;m) g, which, by basic set theory, implies

(P1; P2; w0) 2 � ^w0 2K

which, by appropriately instantiating (b4), is a contradiction.

Cases 2{8: These cases are similar in complexity to Case 1.

2

From the above proof we see that given a usable invariant (INV) proving that a
penetrator cannot obtain a key reduces to straightforward logic. We make two
remarks.

1. We do not need fancy epistemic, nonmonotonic, or other special purpose
logics. Properties of cryptographic protocols can be proved using the
standard approach used for other properties in distributed systems.

2. There is a lot of room for automation. The proof techniques involved are
not sophisticated and we expect that standard theorem provers can be
successfully applied to cryptographic protocols.

4 Other Protocol Requirements

As mentioned previously, it is essential that we are able to prove that the pen-
etrator cannot obtain particular words. However, there are many more prop-
erties that we will want to specify and prove. For example, we can adapt the
requirements described by Syverson and Meadows [SM94] to our model. Our
formalization of these requirements will be rather di�erent from theirs. We dis-
cuss the di�erences below. Now we describe one of their requirements, both
informally and formally.

13

No Key Reuse (informal statement) Once a key has been ac-
cepted for a given session between two given participants, it will
never be accepted again for a di�erent session or with di�erent par-
ticipants.

We will formalize this requirement by �rst assuming that each legitimate par-
ticipant has a local state variable called accept. We think of this variable as
a four dimensional array indexed by a key, a session ID, an initiating princi-
pal, and a receiving principal. We will denote particular elements of accept as
accept(K;M;A;B).

Each legitimate participant of the protocol will manipulate its accept array as
follows.

� Initially, each principal's entire array will be initialized to false.

� Whenever a principal accepts K as the key for a given session,M, with A as
the initiator and B as the receiver, that principal will set accept(K,M,A,B)
to true. (Note: for any legitimate participant in the protocol, P, the third
index of P's accept array will represent the initiator and the fourth index
will represent the receiver; this is independent of whether P is the initiating
or receiving principal.)

� Once an element of the accept array has been set to true, it will never be
reset to false.

Thus, for a given principal, P, P's accept array is meant to indicate which keys
P has accepted (at any time in the past) for which sessions involving which
principals.

We remark that the accept array is not meant to be a part of the actual protocol
implementation. It is better thought of as an auxiliary variable, analogous to,
e.g., \history variables" used in standard proofs of program correctness (e.g.,
see [AL91]). Its primary purpose is to make the speci�cation and proof of our
requirements easier. In an actual implementation, it would be omitted or, at
the very least, its implementation would be improved to save on storage space.

Given the above usage of the accept array, we can formalize the above require-
ment as follows.

2((P1:accept(K;M1; A1; B1) ^ P2:accept(K;M2; A2; B2))
) (M1 = M2 ^A1 = A2 ^B1 = B2))

(12)

(where P1, P2, K, M1, M2, A1, A2, B1, and B2 are all universally quanti�ed
variables.)

Note that this is a standard safety property. In particular, Equation 12 is a
straightforward state invariant and we believe we can again use the standard
approach to verify it.

14

Now we discuss the di�erence between our formalization and Syverson and
Meadows'. They formalized the \No Key Reuse" requirement as follows.

accept_init(user (A; honest); user(B; honest);K;M1)!
:(3- accept_init(user (C; honest); user(D;X);K;M2)) ^

(3- accept_rec(user(C; honest); user(D;X);K;M3)! (C = B ^D = A))

(where 3- means \at some time in the past" and all variables are universally
quanti�ed).

One di�erence between our formalization and the above is that Syverson and
Meadows use actions to indicate that a particular participant has accepted a
key, whereas we have used state variables. For example, accept_init is an
action indicating that a given participant, acting in the initiating role, accepts
a given key for a given session. We do not believe that this di�erence is partic-
ularly signi�cant in itself; the two approaches to identifying this event may be
interchangable.

A more signi�cant di�erence is that in Syverson and Meadows' language, there
is an implicit quanti�cation over all time. That is, we can think of the above
formula as having the \always" operator (2) out front. Thus, we see that
their formalization makes use of nested temporal operators. In their approach,
proving such a formula involves checking numerous paths through the set of
possible executions.

Essentially, Syverson andMeadows are making use of simple temporal reasoning.
We therefore believe that we will be able to complete an analogous proof using
temporal logic (although we haven't tried it yet). However, we also believe we
will be able to complete a simpler proof by using our invariant. In particular,
our invariant is free of temporal quanti�ers and so we should be able to complete
the proof by simply reasoning about state pairs; no temporal reasoning will be
required. Of course, it remains to be seen whether this will work out as we
expect.

5 Further Comparison to Meadows' Method

In Meadows' method, things are rather disjoint.

1. The model of the penetrator is partly speci�ed as a few prolog rules (i.e.,
the set of Noetherian and locally conuent rewrite rules) and partly inte-
grated into the tool (i.e., manifesting itself in the form of the language for
specifying the protocol).

2. Context-free grammers are used to specify sets of words that are unob-
tainable by the penetrator.

15

3. Requirements are speci�ed in temporal logic and then translated by hand
into prolog goals [SM93][SM94].

4. The protocol is speci�ed as a set of prolog rules.

5. Due to the variety of languages used to describe various aspects of theo-
rems, the proofs in Meadows' method are necessarily carried out using a
mixture of formal and informal techniques.

In contrast, in our method, all of the above are carried out using temporal logic.
The protocol, the correctness requirements of the protocol, the capabilities of
the penetrator, and all ancillary de�nitions such as as sets of unobtainable words
are speci�ed as formulas in temporal logic. Further, all proofs are carried out
in temporal logic.

6 Discussion

We have shown that standard linear-time temporal logic can be used to specify
cyrptographic ptotocols, model a system penetrator, and specify correctness
requirements. Although we have yet to apply our technique to a wide variety
of protocol properties, we believe it is clear that the modeling environment
presented in this paper is su�cient to reason about standard protocol properties.
By not being speci�c to cryptographic protocols per se, it also a�ords a wide
degree of exibility not available in other techniques. For example, although
we have given a penetrator only the ability to intercept a message, manipulate
his current word set, and impersonate a protocol participant, we could easily
add further abilities (e.g., to compromise a key). Other advantages we expect
to achieve with our method include the following.

1. Our approach is more general than Meadows' work. As discussed in Sec-
tion 2.5, we are not limited by the particular algebraic properties of the
underlying encryption algorithm.

2. Our approach will be easily integrated into other formalmethods. Since we
use standard concepts from temporal logic, it should be straightforward
to integrate proofs of other properties (e.g., fault tolerance properties)
with our proofs. We even expect to be able to use the same protocol
speci�cation and prove that it satis�es security requirements as well as
other properties. Further, it should be possible to make use of general
purpose theorem provers to carry out the veri�cation.

3. Our method will provide greater assurance in the correctness of the pro-
tocol than Meadows' method. This is because the result of applying our
method will be a clear-cut theorem and proof. The theorem will state that

16

a particular protocol, executing in parallel with a particular penetrator,
satis�es a particular goal, where all de�nitions and assumptions are stated
as formulas in a single logic. Further, the proof will be carried out in that
same logic.

References

[AL91] Mart��n Abadi and Leslie Lamport. On the existence of re�nement
mappings. Theoretical Computer Science, 82(2):253{284, May
1991.

[BBCLvW93] Pierre Bieber, Nora Boulahia-Cuppens, Thomas Lehmann, and
Erich van Wickeren. Abstract machines for communication se-
curity. In Proc. Computer Security Foundations Workshop VI,
Franconia, NH, June 1993. IEEE Computer Society Press.

[DS81] Dorothy E. Denning and Giovanni Maria Sacco. Timestamps
in key distribution protocols. Communications of the ACM,
24(8):533{536, August 1981.

[DvOW92] Whit�eld Di�e, Paul C. van Oorschot, and Michael J. Wiener.
Authentication and authenticated key exchanges. Designs,
Codes, and Cryptography, 2(2):107{125, June 1992.

[DY83] Danny Dolev and Andrew C. Yao. On the security of public
key protocols. IEEE Transactions on Information Theory, IT-
29(2):198{208, March 1983.

[Lam91] Leslie Lamport. The temporal logic of actions. Technical Re-
port 79, DEC Systems Research Center, Palo Alto, CA, Decem-
ber 1991.

[Mea92] Catherine Meadows. Applying formal methods to the analysis
of a key management protocol. Journal of Computer Security,
1(1):5{35, 1992.

[SM93] Paul Syverson and Catherine Meadows. A logical language for
specifying cryptographic protocol requirements. In Proceedings of
the IEEE Computer Society Symposium on Research in Security
and Privacy, pages 165{177, Oakland, CA, May 1993.

[SM94] Paul Syverson and Catherine Meadows. Formal requirements
for key distribution protocols. In Pre-proceedings of EURO-
CRYPT `94, pages 325{337, University of Perugia, Italy, May
1994. The proceedings of EUROCRYPT `94 will be published in
the Springer-Verlag Lecture Notes in Computer Science series.

17

